0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
MT44K32M18RB-093 IT:A TR

MT44K32M18RB-093 IT:A TR

  • 厂商:

    MICRON(镁光)

  • 封装:

    FBGA168_13.5X13.5MM

  • 描述:

    IC DRAM 576MBIT PARALLEL 168BGA

  • 数据手册
  • 价格&库存
MT44K32M18RB-093 IT:A TR 数据手册
576Mb: x18, x36 RLDRAM 3 Features RLDRAM 3 MT44K32M18 – 2 Meg x 18 x 16 Banks MT44K16M36 – 1 Meg x 36 x 16 Banks Options1 Features • Clock cycle and tRC timing – 0.93ns and tRC (MIN) = 8ns (RL3-2133) – 0.93ns and tRC (MIN) = 10ns (RL3-2133) – 1.07ns and tRC (MIN) = 8ns (RL3-1866) – 1.07ns and tRC (MIN) = 10ns (RL3-1866) – 1.25ns and tRC (MIN) = 8ns (RL3-1600) – 1.25ns and tRC (MIN) = 10ns (RL3-1600) – 1.25ns and tRC (MIN) = 12ns (RL3-1600) • Configuration – 32 Meg x 18 – 16 Meg x 36 • Operating temperature – Commercial (TC = 0° to +95°C) – Industrial (TC = –40°C to +95°C) • Package – 168-ball FBGA – 168-ball FBGA (Pb-free) • Revision • 1066 MHz DDR operation (2133 Mb/s/ball data rate) • 76.8 Gb/s peak bandwidth (x36 at 1066 MHz clock frequency) • Organization – 32 Meg x 18, and 16 Meg x 36 common I/O (CIO) – 16 banks • 1.2V center-terminated push/pull I/O • 2.5V V EXT, 1.35V V DD, 1.2V V DDQ I/O • Reduced cycle time (tRC (MIN) = 8 - 12ns) • SDR addressing • Programmable READ/WRITE latency (RL/WL) and burst length • Data mask for WRITE commands • Differential input clocks (CK, CK#) • Free-running differential input data clocks (DKx, DKx#) and output data clocks (QKx, QKx#) • On-die DLL generates CK edge-aligned data and differential output data clock signals • 64ms refresh (128K refresh per 64ms) • 168-ball FBGA package • 40Ω or 60Ω matched impedance outputs • Integrated on-die termination (ODT) • Single or multibank writes • Extended operating range (200–1066 MHz) • READ training register • Multiplexed and non-multiplexed addressing capabilities • Mirror function • Output driver and ODT calibration • JTAG interface (IEEE 1149.1-2001) PDF: 09005aef84003617 576mb_rldram3.pdf - Rev. D 03/13 EN Notes: 1 Marking -093E -093 -107E -107 -125F -125E -125 32M18 16M36 None IT PA2 RB :A 1. Not all options listed can be combined to define an offered product. Use the part catalog search on www.micron.com for available offerings. 2. Consult factory. Micron Technology, Inc. reserves the right to change products or specifications without notice. © 2011 Micron Technology, Inc. All rights reserved. Products and specifications discussed herein are subject to change by Micron without notice. 576Mb: x18, x36 RLDRAM 3 Features Figure 1: 576Mb RLDRAM® 3 Part Numbers Example Part Number: MT44K16M36PA-093E MT44K Configuration Package Speed Temp Temperature Configuration 32 Meg x 18 32M18 16 Meg x 36 16M36 Commercial Industrial None IT Speed Grade -093E tCK = 0.93ns (8ns tRC) Package tCK = 0.93ns (10ns tRC) 168-ball FBGA PA -093 168-ball FBGA (Pb-free) RB -107E tCK = 1.07ns (8ns tRC) -107 tCK = 1.07ns (10ns tRC) -125F tCK = 1.25ns (8ns tRC) -125E tCK = 1.25ns (10ns tRC) -125 tCK = 1.25ns (12ns tRC) BGA Part Marking Decoder Due to space limitations, BGA-packaged components have an abbreviated part marking that is different from the part number. Micron’s BGA Part Marking Decoder is available on Micron’s Web site at www.micron.com. PDF: 09005aef84003617 576mb_rldram3.pdf - Rev. D 03/13 EN 2 Micron Technology, Inc. reserves the right to change products or specifications without notice. © 2011 Micron Technology, Inc. All rights reserved. 576Mb: x18, x36 RLDRAM 3 Features Contents General Description ......................................................................................................................................... 8 General Notes .............................................................................................................................................. 8 State Diagram .................................................................................................................................................. 9 Functional Block Diagrams ............................................................................................................................. 10 Ball Assignments and Descriptions ................................................................................................................. 12 Package Dimensions ....................................................................................................................................... 16 Electrical Characteristics – IDD Specifications .................................................................................................. 17 Electrical Specifications – Absolute Ratings and I/O Capacitance ..................................................................... 21 Absolute Maximum Ratings ........................................................................................................................ 21 Input/Output Capacitance .......................................................................................................................... 21 AC and DC Operating Conditions .................................................................................................................... 22 AC Overshoot/Undershoot Specifications .................................................................................................... 24 Slew Rate Definitions for Single-Ended Input Signals ................................................................................... 27 Slew Rate Definitions for Differential Input Signals ...................................................................................... 29 ODT Characteristics ....................................................................................................................................... 30 ODT Resistors ............................................................................................................................................ 30 ODT Sensitivity .......................................................................................................................................... 32 Output Driver Impedance ............................................................................................................................... 33 Output Driver Sensitivity ............................................................................................................................ 35 Output Characteristics and Operating Conditions ............................................................................................ 36 Reference Output Load ............................................................................................................................... 39 Slew Rate Definitions for Single-Ended Output Signals ..................................................................................... 40 Slew Rate Definitions for Differential Output Signals ........................................................................................ 41 Speed Bin Tables ............................................................................................................................................ 42 AC Electrical Characteristics ........................................................................................................................... 44 Temperature and Thermal Impedance Characteristics ..................................................................................... 49 Command and Address Setup, Hold, and Derating ........................................................................................... 51 Data Setup, Hold, and Derating ....................................................................................................................... 57 Commands .................................................................................................................................................... 63 MODE REGISTER SET (MRS) Command ......................................................................................................... 64 Mode Register 0 (MR0) .................................................................................................................................... 65 tRC ............................................................................................................................................................. 66 Data Latency .............................................................................................................................................. 66 DLL Enable/Disable ................................................................................................................................... 66 Address Multiplexing .................................................................................................................................. 66 Mode Register 1 (MR1) .................................................................................................................................... 68 Output Drive Impedance ............................................................................................................................ 68 DQ On-Die Termination (ODT) ................................................................................................................... 68 DLL Reset ................................................................................................................................................... 68 ZQ Calibration ............................................................................................................................................ 69 ZQ Calibration Long ................................................................................................................................... 70 ZQ Calibration Short ................................................................................................................................... 70 AUTO REFRESH Protocol ............................................................................................................................ 71 Burst Length (BL) ....................................................................................................................................... 71 Mode Register 2 (MR2) .................................................................................................................................... 73 READ Training Register (RTR) ..................................................................................................................... 73 WRITE Protocol .......................................................................................................................................... 75 WRITE Command .......................................................................................................................................... 75 Multibank WRITE ....................................................................................................................................... 76 READ Command ............................................................................................................................................ 76 PDF: 09005aef84003617 576mb_rldram3.pdf - Rev. D 03/13 EN 3 Micron Technology, Inc. reserves the right to change products or specifications without notice. © 2011 Micron Technology, Inc. All rights reserved. 576Mb: x18, x36 RLDRAM 3 Features AUTO REFRESH Command ............................................................................................................................ 78 INITIALIZATION Operation ............................................................................................................................ 80 WRITE Operation ........................................................................................................................................... 83 READ Operation ............................................................................................................................................. 87 AUTO REFRESH Operation ............................................................................................................................. 90 Multiplexed Address Mode .............................................................................................................................. 93 Data Latency in Multiplexed Address Mode ................................................................................................. 98 REFRESH Command in Multiplexed Address Mode ..................................................................................... 98 Mirror Function ............................................................................................................................................ 102 RESET Operation ........................................................................................................................................... 102 IEEE 1149.1 Serial Boundary Scan (JTAG) ....................................................................................................... 103 Disabling the JTAG Feature ........................................................................................................................ 103 Test Access Port (TAP) ................................................................................................................................ 103 TAP Controller ........................................................................................................................................... 104 Performing a TAP RESET ............................................................................................................................ 106 TAP Registers ............................................................................................................................................ 106 TAP Instruction Set .................................................................................................................................... 107 PDF: 09005aef84003617 576mb_rldram3.pdf - Rev. D 03/13 EN 4 Micron Technology, Inc. reserves the right to change products or specifications without notice. © 2011 Micron Technology, Inc. All rights reserved. 576Mb: x18, x36 RLDRAM 3 Features List of Figures Figure 1: 576Mb RLDRAM® 3 Part Numbers ..................................................................................................... 2 Figure 2: Simplified State Diagram ................................................................................................................... 9 Figure 3: 32 Meg x 18 Functional Block Diagram ............................................................................................. 10 Figure 4: 16 Meg x 36 Functional Block Diagram ............................................................................................. 11 Figure 5: 168-Ball FBGA ................................................................................................................................. 16 Figure 6: Single-Ended Input Signal ............................................................................................................... 23 Figure 7: Overshoot ....................................................................................................................................... 24 Figure 8: Undershoot .................................................................................................................................... 24 Figure 9: V IX for Differential Signals ................................................................................................................ 25 Figure 10: Single-Ended Requirements for Differential Signals ........................................................................ 26 Figure 11: Definition of Differential AC Swing and tDVAC ................................................................................ 26 Figure 12: Nominal Slew Rate Definition for Single-Ended Input Signals .......................................................... 28 Figure 13: Nominal Differential Input Slew Rate Definition for CK, CK#, DKx, and DKx# .................................. 29 Figure 14: ODT Levels and I-V Characteristics ................................................................................................ 30 Figure 15: Output Driver ................................................................................................................................ 33 Figure 16: DQ Output Signal .......................................................................................................................... 38 Figure 17: Differential Output Signal .............................................................................................................. 39 Figure 18: Reference Output Load for AC Timing and Output Slew Rate ........................................................... 39 Figure 19: Nominal Slew Rate Definition for Single-Ended Output Signals ....................................................... 40 Figure 20: Nominal Differential Output Slew Rate Definition for QKx, QKx# ..................................................... 41 Figure 21: Example Temperature Test Point Location ...................................................................................... 50 Figure 22: Nominal Slew Rate and tVAC for tIS (Command and Address - Clock) ............................................... 53 Figure 23: Nominal Slew Rate for tIH (Command and Address - Clock) ............................................................ 54 Figure 24: Tangent Line for tIS (Command and Address - Clock) ...................................................................... 55 Figure 25: Tangent Line for tIH (Command and Address - Clock) ..................................................................... 56 Figure 26: Nominal Slew Rate and tVAC for tDS (DQ - Strobe) .......................................................................... 59 Figure 27: Nominal Slew Rate for tDH (DQ - Strobe) ........................................................................................ 60 Figure 28: Tangent Line for tDS (DQ - Strobe) ................................................................................................. 61 Figure 29: Tangent Line for tDH (DQ - Strobe) ................................................................................................ 62 Figure 30: MRS Command Protocol ............................................................................................................... 64 Figure 31: MR0 Definition for Non-Multiplexed Address Mode ........................................................................ 65 Figure 32: MR1 Definition for Non-Multiplexed Address Mode ........................................................................ 68 Figure 33: ZQ Calibration Timing (ZQCL and ZQCS) ....................................................................................... 70 Figure 34: Read Burst Lengths ........................................................................................................................ 72 Figure 35: MR2 Definition for Non-Multiplexed Address Mode ........................................................................ 73 Figure 36: READ Training Function - Back-to-Back Readout ............................................................................ 74 Figure 37: WRITE Command ......................................................................................................................... 75 Figure 38: READ Command ........................................................................................................................... 77 Figure 39: Bank Address-Controlled AUTO REFRESH Command ..................................................................... 78 Figure 40: Multibank AUTO REFRESH Command ........................................................................................... 79 Figure 41: Power-Up/Initialization Sequence ................................................................................................. 81 Figure 42: WRITE Burst ................................................................................................................................. 83 Figure 43: Consecutive WRITE Bursts ............................................................................................................. 84 Figure 44: WRITE-to-READ ............................................................................................................................ 84 Figure 45: WRITE - DM Operation .................................................................................................................. 85 Figure 46: Consecutive Quad Bank WRITE Bursts ........................................................................................... 86 Figure 47: Interleaved READ and Quad Bank WRITE Bursts ............................................................................. 86 Figure 48: Basic READ Burst .......................................................................................................................... 87 Figure 49: Consecutive READ Bursts (BL = 2) .................................................................................................. 88 Figure 50: Consecutive READ Bursts (BL = 4) .................................................................................................. 88 PDF: 09005aef84003617 576mb_rldram3.pdf - Rev. D 03/13 EN 5 Micron Technology, Inc. reserves the right to change products or specifications without notice. © 2011 Micron Technology, Inc. All rights reserved. 576Mb: x18, x36 RLDRAM 3 Features Figure 51: Figure 52: Figure 53: Figure 54: Figure 55: Figure 56: Figure 57: Figure 58: Figure 59: Figure 60: Figure 61: Figure 62: Figure 63: Figure 64: Figure 65: Figure 66: Figure 67: Figure 68: Figure 69: Figure 70: Figure 71: READ-to-WRITE (BL = 2) ............................................................................................................... 89 Read Data Valid Window ................................................................................................................ 89 Bank Address-Controlled AUTO REFRESH Cycle ............................................................................. 90 Multibank AUTO REFRESH Cycle ................................................................................................... 90 READ Burst with ODT .................................................................................................................... 91 READ-NOP-READ with ODT .......................................................................................................... 92 Command Description in Multiplexed Address Mode ..................................................................... 93 Power-Up/Initialization Sequence in Multiplexed Address Mode ..................................................... 94 MR0 Definition for Multiplexed Address Mode ................................................................................ 95 MR1 Definition for Multiplexed Address Mode ................................................................................ 96 MR2 Definition for Multiplexed Address Mode ................................................................................ 97 Bank Address-Controlled AUTO REFRESH Operation with Multiplexed Addressing .......................... 98 Multibank AUTO REFRESH Operation with Multiplexed Addressing ................................................ 98 Consecutive WRITE Bursts with Multiplexed Addressing ................................................................. 99 WRITE-to-READ with Multiplexed Addressing ............................................................................... 100 Consecutive READ Bursts with Multiplexed Addressing .................................................................. 100 READ-to-WRITE with Multiplexed Addressing ............................................................................... 101 TAP Controller State Diagram ........................................................................................................ 105 TAP Controller Functional Block Diagram ..................................................................................... 105 JTAG Operation - Loading Instruction Code and Shifting Out Data ................................................. 108 TAP Timing .................................................................................................................................. 109 PDF: 09005aef84003617 576mb_rldram3.pdf - Rev. D 03/13 EN 6 Micron Technology, Inc. reserves the right to change products or specifications without notice. © 2011 Micron Technology, Inc. All rights reserved. 576Mb: x18, x36 RLDRAM 3 Features List of Tables Table 1: 32 Meg x 18 Ball Assignments – 168-Ball FBGA (Top View) .................................................................. 12 Table 2: 16 Meg x 36 Ball Assignments – 168-Ball FBGA (Top View) .................................................................. 13 Table 3: Ball Descriptions .............................................................................................................................. 14 Table 4: IDD Operating Conditions and Maximum Limits ................................................................................ 17 Table 5: Absolute Maximum Ratings .............................................................................................................. 21 Table 6: Input/Output Capacitance ................................................................................................................ 21 Table 7: DC Electrical Characteristics and Operating Conditions ..................................................................... 22 Table 8: Input AC Logic Levels ........................................................................................................................ 22 Table 9: Control and Address Balls ................................................................................................................. 24 Table 10: Clock, Data, Strobe, and Mask Balls ................................................................................................. 24 Table 11: Differential Input Operating Conditions (CK, CK# and DKx, DKx#) ................................................... 25 Table 12: Allowed Time Before Ringback ( tDVAC) for CK, CK#, DKx, and DKx# ................................................. 27 Table 13: Single-Ended Input Slew Rate Definition .......................................................................................... 27 Table 14: Differential Input Slew Rate Definition ............................................................................................. 29 Table 15: ODT DC Electrical Characteristics ................................................................................................... 30 Table 16: RTT Effective Impedances ................................................................................................................ 31 Table 17: ODT Sensitivity Definition .............................................................................................................. 32 Table 18: ODT Temperature and Voltage Sensitivity ........................................................................................ 32 Table 19: Driver Pull-Up and Pull-Down Impedance Calculations ................................................................... 34 Table 20: Output Driver Sensitivity Definition ................................................................................................. 35 Table 21: Output Driver Voltage and Temperature Sensitivity .......................................................................... 35 Table 22: Single-Ended Output Driver Characteristics ..................................................................................... 36 Table 23: Differential Output Driver Characteristics ........................................................................................ 37 Table 24: Single-Ended Output Slew Rate Definition ....................................................................................... 40 Table 25: Differential Output Slew Rate Definition .......................................................................................... 41 Table 26: RL3 2133/1866 Speed Bins ............................................................................................................... 42 Table 27: RL3 1600 Speed Bins ....................................................................................................................... 43 Table 28: AC Electrical Characteristics ............................................................................................................ 44 Table 29: Temperature Limits ......................................................................................................................... 49 Table 30: Thermal Impedance ........................................................................................................................ 49 Table 31: Command and Address Setup and Hold Values Referenced at 1 V/ns – AC/DC-Based ........................ 51 Table 32: Derating Values for tIS/tIH – AC150/DC100-Based ............................................................................ 52 Table 33: Minimum Required Time tVAC Above V IH(AC) (or Below V IL(AC)) for Valid Transition ............................ 52 Table 34: Data Setup and Hold Values at 1 V/ns (DKx, DKx# at 2V/ns) – AC/DC-Based ..................................... 57 Table 35: Derating Values for tDS/tDH – AC150/DC100-Based ......................................................................... 58 Table 36: Minimum Required Time tVAC Above V IH(AC) (or Below V IL(AC)) for Valid Transition ............................ 58 Table 37: Command Descriptions .................................................................................................................. 63 Table 38: Command Table ............................................................................................................................. 63 Table 39: tRC_MRS values .............................................................................................................................. 66 Table 40: Address Widths of Different Burst Lengths ....................................................................................... 71 Table 41: Address Mapping in Multiplexed Address Mode ............................................................................... 97 Table 42: 32 Meg x 18 Ball Assignments with MF Ball Tied HIGH ..................................................................... 102 Table 43: TAP Input AC Logic Levels .............................................................................................................. 109 Table 44: TAP AC Electrical Characteristics .................................................................................................... 109 Table 45: TAP DC Electrical Characteristics and Operating Conditions ............................................................ 110 Table 46: Identification Register Definitions .................................................................................................. 110 Table 47: Scan Register Sizes ......................................................................................................................... 111 Table 48: Instruction Codes .......................................................................................................................... 111 Table 49: Boundary Scan (Exit) ..................................................................................................................... 111 PDF: 09005aef84003617 576mb_rldram3.pdf - Rev. D 03/13 EN 7 Micron Technology, Inc. reserves the right to change products or specifications without notice. © 2011 Micron Technology, Inc. All rights reserved. 576Mb: x18, x36 RLDRAM 3 General Description General Description The Micron® RLDRAM® 3 is a high-speed memory device designed for high-bandwidth data storage—telecommunications, networking, cache applications, etc. The chip’s 16bank architecture is optimized for sustainable high-speed operation. The DDR I/O interface transfers two data bits per clock cycle at the I/O balls. Output data is referenced to the READ strobes. Commands, addresses, and control signals are also registered at every positive edge of the differential input clock, while input data is registered at both positive and negative edges of the input data strobes. Read and write accesses to the RL3 device are burst-oriented. The burst length (BL) is programmable to 2, 4, or 8 by a setting in the mode register. The device is supplied with 1.35V for the core and 1.2V for the output drivers. The 2.5V supply is used for an internal supply. Bank-scheduled refresh is supported with the row address generated internally. The 168-ball FBGA package is used to enable ultra-high-speed data transfer rates. General Notes • The functionality and the timing specifications discussed in this data sheet are for the DLL enable mode of operation. • Any functionality not specifically stated is considered undefined, illegal, and not supported, and can result in unknown operation. • Nominal conditions are assumed for specifications not defined within the figures shown in this data sheet. • Throughout this data sheet, the terms "RLDRAM," "DRAM,” and "RLDRAM 3" are all used interchangeably and refer to the RLDRAM 3 SDRAM device. • References to DQ, DK, QK, DM, and QVLD are to be interpeted as each group collectively, unless specifically stated otherwise. This includes true and complement signals of differential signals. • Non-multiplexed operation is assumed if not specified as multiplexed. • A X36 Device supplies four QK/QK# sets. One per 9 DQs. If a user only wants to use two QK/QK# sets, this is allowed. The user needs to use QK0/QK0# and QK1/QK1#. QK0/QK0# will control DQ[8:0] & DQ[26:18]. QK1/QK1# will control DQ[17:9] & DQ[35:27]. The QK to DQ timing parameter to be used would be tQKQ02, tQKQ13. The unused QK/QK# pins should be left floating. PDF: 09005aef84003617 576mb_rldram3.pdf - Rev. D 03/13 EN 8 Micron Technology, Inc. reserves the right to change products or specifications without notice. © 2011 Micron Technology, Inc. All rights reserved. 576Mb: x18, x36 RLDRAM 3 State Diagram State Diagram Figure 2: Simplified State Diagram Initialization sequence NOP READ WRITE RESET# MRS AREF Automatic sequence Command sequence PDF: 09005aef84003617 576mb_rldram3.pdf - Rev. D 03/13 EN 9 Micron Technology, Inc. reserves the right to change products or specifications without notice. © 2011 Micron Technology, Inc. All rights reserved. PDF: 09005aef84003617 576mb_rldram3.pdf - Rev. D 03/13 EN Functional Block Diagrams Figure 3: 32 Meg x 18 Functional Block Diagram ZQ ZQ CAL RZQ ZQ CAL ZQCL, ZQCS ODT control CK CK# Command decode CS# REF# WE# Control logic VDDQ/2 Bank 15 Bank 14 RTT MF RESET# Mode register Refresh counter 24 ODT control Bank 1 Bank 0 13 Rowaddress MUX 13 13 Bank 0 rowaddress latch and decoder 8192 DLL ZQ CAL 10 144 SENSE AMPLIFIERS Sense amplifiers READ n logic n 18 18 18 DQ latch 4 144 Address register Bank control logic 4 VDDQ/2 I/O gating DQM mask logic 16 2 1 RTT ODT control 18 5 8 TMS TDI JTAG Logic and Boundary Scan Register 71 Column decoder WRITE FIFO and drivers CLK in 71 (0...3) RCVRS 18 18 Input logic 144 TCK DQ[17:0] 16 32 Columnaddress counter/ latch QK0/QK0#,QK1/QK1# 4 DK0/DK0#, DK1/DK1# VDDQ/2 RTT 21 ODT control 2 DM[1:0] TDO Notes: 1. Example for BL = 2; column address will be reduced with an increase in burst length. 2. 8 = (length of burst) x 2^ (number of column addresses to WRITE FIFO and READ logic). 576Mb: x18, x36 RLDRAM 3 Functional Block Diagrams Micron Technology, Inc. reserves the right to change products or specifications without notice. © 2011 Micron Technology, Inc. All rights reserved. 24 QVLD READ Drivers QK/QK# generator 8192 A[19:0]1 BA[3:0] (0 ....17) CK/CK# Bank 0 memory array (8192 x 32 x 8 x 18)2 PDF: 09005aef84003617 576mb_rldram3.pdf - Rev. D 03/13 EN Functional Block Diagrams Figure 4: 16 Meg x 36 Functional Block Diagram ZQ ZQ CAL RZQ ZQ CAL ZQCL, ZQCS ODT control CK CK# Command decode CS# REF# WE# Control logic VDDQ/2 Bank 15 Bank 14 RTT MF RESET# Refresh counter Mode register 23 ODT control Bank 1 Bank 0 13 Rowaddress MUX 13 13 Bank 0 rowaddress latch and decoder 8192 11 144 READ n logic n 36 36 36 READ Drivers DQ latch 4 16 ODT control (0...3) 16 4 32 8 TCK TMS TDI JTAG Logic and Boundary Scan Register 61 Column decoder WRITE FIFO and drivers CLK in 61 36 36 36 DK0/DK0#, DK1/DK1# RCVRS Input logic 144 5 Columnaddress counter/ latch DQ[35:0] RTT 11 I/O gating DQM mask logic VDDQ/2 RTT 11 ODT control 2 DM[1:0] TDO Notes: 1. Example for BL = 2; column address will be reduced with an increase in burst length. 2. 4 = (length of burst) x 2^ (number of column addresses to WRITE FIFO and READ logic). 576Mb: x18, x36 RLDRAM 3 Functional Block Diagrams Micron Technology, Inc. reserves the right to change products or specifications without notice. © 2011 Micron Technology, Inc. All rights reserved. Bank control logic QK0/QK0#, QK1/QK1# QK2/QK2#, QK3/QK3# VDDQ/2 144 Address register QVLD[1:0] 8 QK/QK# generator 8192 23 DLL ZQ CAL SENSEamplifiers AMPLIFIERS Sense A[18:0]1 (0 ....35) CK/CK# Bank 0 memory array (8192 x 32 x 4 x 36)2 576Mb: x18, x36 RLDRAM 3 Ball Assignments and Descriptions Ball Assignments and Descriptions Table 1: 32 Meg x 18 Ball Assignments – 168-Ball FBGA (Top View) 1 A 2 3 4 5 6 7 8 9 10 11 12 13 VSS VDD NF VDDQ NF VREF DQ7 VDDQ DQ8 VDD VSS RESET# B VEXT VSS NF VSSQ NF VDDQ DM0 VDDQ DQ5 VSSQ DQ6 VSS VEXT C VDD NF VDDQ NF VSSQ NF DK0# DQ2 VSSQ DQ3 VDDQ DQ4 VDD D A11 VSSQ NF VDDQ NF VSSQ DK0 VSSQ QK0 VDDQ DQ0 VSSQ A13 E VSS A0 VSSQ NF VDDQ NF MF QK0# VDDQ DQ1 VSSQ CS# VSS 1 F A7 NF(CS1/A20) VDD A2 A1 WE# ZQ REF# A3 A4 VDD A5 A9 G VSS(A21)2 A15 A6 VSS BA1 VSS CK# VSS BA0 VSS A8 A18 VSS (RFU)3 H A19 VDD A14 A16 VDD BA3 CK BA2 VDD A17 A12 VDD A10 J VDDQ NF VSSQ NF VDDQ NF VSS QK1# VDDQ DQ9 VSSQ QVLD VDDQ K NF VSSQ NF VDDQ NF VSSQ DK1 VSSQ QK1 VDDQ DQ10 VSSQ DQ11 L VDD NF VDDQ NF VSSQ NF DK1# DQ12 VSSQ DQ13 VDDQ DQ14 VDD M VEXT VSS NF VSSQ NF VDDQ DM1 VDDQ DQ15 VSSQ DQ16 VSS VEXT N VSS TCK VDD TDO VDDQ NF VREF DQ17 VDDQ TDI VDD TMS VSS Notes: PDF: 09005aef84003617 576mb_rldram3.pdf - Rev. D 03/13 EN 1. F2 is an NF ball for both the X18 & X36 576Mb devices, but is also the Location of CS1 to support the 1Gb x18 DDP device. This same ball has been designated as the location of A20 for the future 2Gb monolithic device. F2 is Internally connected so it can mirror the A5 address signal when MF is asserted HIGH and has parasitic characteristics of an address pin. 2. G1 is a VSS ball for the 576Mb device, but has been designated as the location of A21 for the future X18 2Gb monolithic device. 3. G13 is a VSS ball for both X18 & X36 576Mb devices, but has been reserved for future use (RFU) on the 1Gb & 2Gb monolithic devices and will have parasitic characteristics of an address. 4. NF balls for the x18 configuration are internally connected and have parasitic characteristics of an I/O. Balls may be connected to VSSQ. 5. MF is assumed to be tied LOW for this ball assignment. 12 Micron Technology, Inc. reserves the right to change products or specifications without notice. © 2011 Micron Technology, Inc. All rights reserved. 576Mb: x18, x36 RLDRAM 3 Ball Assignments and Descriptions Table 2: 16 Meg x 36 Ball Assignments – 168-Ball FBGA (Top View) 1 A 2 3 4 5 6 7 8 9 10 11 12 13 VSS VDD DQ26 VDDQ DQ25 VREF DQ7 VDDQ DQ8 VDD VSS RESET# B VEXT VSS DQ24 VSSQ DQ23 VDDQ DM0 VDDQ DQ5 VSSQ DQ6 VSS VEXT C VDD DQ22 VDDQ DQ21 VSSQ DQ20 DK0# DQ2 VSSQ DQ3 VDDQ DQ4 VDD D A11 VSSQ DQ18 VDDQ QK2 VSSQ DK0 VSSQ QK0 VDDQ DQ0 VSSQ A13 E VSS A0 VSSQ DQ19 VDDQ QK2# MF QK0# VDDQ DQ1 VSSQ CS# VSS 1 F A7 NF(CS1/A20) VDD A2 A1 WE# ZQ REF# A3 A4 VDD A5 A9 G VSS(NF)2 A15 A6 VSS BA1 VSS CK# VSS BA0 VSS A8 A18 VSS (RFU)3 H NF(A19)4 VDD A14 A16 VDD BA3 CK BA2 VDD A17 A12 VDD A10 J VDDQ QVLD1 VSSQ DQ27 VDDQ QK3# VSS QK1# VDDQ DQ9 VSSQ QVLD0 VDDQ K DQ29 VSSQ DQ28 VDDQ QK3 VSSQ DK1 VSSQ QK1 VDDQ DQ10 VSSQ DQ11 L VDD DQ32 VDDQ DQ31 VSSQ DQ30 DK1# DQ12 VSSQ DQ13 VDDQ DQ14 VDD M VEXT VSS DQ34 VSSQ DQ33 VDDQ DM1 VDDQ DQ15 VSSQ DQ16 VSS VEXT N VSS TCK VDD TDO VDDQ DQ35 VREF DQ17 VDDQ TDI VDD TMS VSS Notes: PDF: 09005aef84003617 576mb_rldram3.pdf - Rev. D 03/13 EN 1. F2 is an NF ball for both the X18 & X36 576Mb devices, but is also the Location of CS1 to support the 1Gb x18 DDP device. This same ball has been designated as the location of A20 for the future 2Gb monolithic device. F2 is Internally connected so it can mirror the A5 address signal when MF is asserted HIGH and has parasitic characteristics of an address pin. 2. G1 is a VSS ball for this 576Mb device, but will be an NF ball for the future X36 2Gb monolithic device. The NF ball (A21 for X18 2Gb device) will have parasitic characteristics of an address. 3. G13 is a VSS ball for both X18 & X36 576Mb devices, but has been reserved for future use (RFU) on the 1Gb & 2Gb monolithic devices and will have parasitic characteristics of an address. 4. NF ball for x36 configuration is internally connected and has parasitic characteristics of an address (A19 for x18 configuration). Ball may be connected to VSSQ. 5. MF is assumed to be tied LOW for this ball assignment. 13 Micron Technology, Inc. reserves the right to change products or specifications without notice. © 2011 Micron Technology, Inc. All rights reserved. 576Mb: x18, x36 RLDRAM 3 Ball Assignments and Descriptions Table 3: Ball Descriptions Symbol Type Description A[19:0] Input Address inputs: A[19:0] define the row and column addresses for READ and WRITE operations. During a MODE REGISTER SET, the address inputs define the register settings along with BA[3:0]. They are sampled at the rising edge of CK. BA[3:0] Input Bank address inputs: Select the internal bank to which a command is being applied. CK/CK# Input Input clock: CK and CK# are differential input clocks. Addresses and commands are latched on the rising edge of CK. CS# Input Chip select: CS# enables the command decoder when LOW and disables it when HIGH. When the command decoder is disabled, new commands are ignored, but internal operations continue. DQ[35:0] I/O Data input: The DQ signals form the 36-bit data bus. During READ commands, the data is referenced to both edges of QK. During WRITE commands, the data is sampled at both edges of DK. DKx, DKx# Input Input data clock: DKx and DKx# are differential input data clocks. All input data is referenced to both edges of DKx. For the x36 device, DQ[8:0] and DQ[26:18] are referenced to DK0 and DK0#, and DQ[17:9] and DQ[35:27] are referenced to DK1 and DK1#. For the x18 device, DQ[8:0] are referenced to DK0 and DK0#, and DQ[17:9] are referenced to DK1 and DK1#. DKx and DKx# are free-running signals and must always be supplied to the device. DM[1:0] Input Input data mask: DM is the input mask signal for WRITE data. Input data is masked when DM is sampled HIGH. DM0 is used to mask the lower byte for the x18 device and DQ[8:0] and DQ[26:18] for the x36 device. DM1 is used to mask the upper byte for the x18 device and DQ[17:9] and DQ[35:27] for the x36 device. Tie DM[1:0] to VSS if not used. TCK Input IEEE 1149.1 clock input: This ball must be tied to VSS if the JTAG function is not used. TMS, TDI Input IEEE 1149.1 test inputs: These balls may be left as no connects if the JTAG function is not used. WE#, REF# Input Command inputs: Sampled at the positive edge of CK, WE# and REF# (together with CS#) define the command to be executed. RESET# Input Reset: RESET# is an active LOW CMOS input referenced to VSS. RESET# assertion and deassertion are asynchronous. RESET# is a CMOS input defined with DC HIGH ≥ 0.8 x VDD and DC LOW ≤ 0.2 x VDDQ. ZQ Input External impedance: This signal is used to tune the device’s output impedance and ODT. RZQ needs to be 240Ω, where RZQ is a resistor from this signal to ground. QKx, QKx# Output Output data clocks: QK and QK# are opposite-polarity output data clocks. They are free-running signals and during READ commands are edge-aligned with the DQs. For the x36 device, QK0, QK0# align with DQ[8:0]; QK1, QK1# align with DQ[17:9]; QK2, QK2# align with DQ[26:18]; QK3, QK3# align with DQ[35:27]. For the x18 device, QK0, QK0# align with DQ[8:0]; QK1, QK1# align with DQ[17:9]. QVLDx Output Data valid: The QVLD ball indicates that valid output data will be available on the subsequent rising clock edge. There is a single QVLD ball for the x18 device and two, QVLD0 and QVLD1, for the x36 device. QVLD0 aligns with DQ[17:0]; QVLD1 aligns with DQ[35:18]. MF Input Mirror function: The mirror function ball is a DC input used to create mirrored ballouts for simple dual-loaded clamshell mounting. If the ball is tied to VSS, the address and command balls are in their true layout. If the ball is tied to VDDQ, they are in the complement location. MF must be tied HIGH or LOW and cannot be left floating. MF is a CMOS input defined with DC HIGH ≥ 0.8 x VDD and DC LOW ≤ 0.2 x VDDQ. PDF: 09005aef84003617 576mb_rldram3.pdf - Rev. D 03/13 EN 14 Micron Technology, Inc. reserves the right to change products or specifications without notice. © 2011 Micron Technology, Inc. All rights reserved. 576Mb: x18, x36 RLDRAM 3 Ball Assignments and Descriptions Table 3: Ball Descriptions (Continued) Symbol Type TDO Output IEEE 1149.1 test output: JTAG output. This ball may be left as no connect if the JTAG function is not used. VDD Supply Power supply: 1.35V nominal. See Table 7 (page 22) for range. VDDQ Supply DQ power supply: 1.2V nominal. Isolated on the device for improved noise immunity. See Table 7 (page 22) for range. VEXT Supply Power supply: 2.5V nominal. See Table 7 (page 22) for range. VREF Supply Input reference voltage: VDDQ/2 nominal. Provides a reference voltage for the input buffers. VSS Supply Ground. VSSQ Supply DQ ground: Isolated on the device for improved noise immunity. NC – No connect: These balls are not connected to the DRAM. NF – No function: These balls are connected to the DRAM, but provide no functionality. PDF: 09005aef84003617 576mb_rldram3.pdf - Rev. D 03/13 EN Description 15 Micron Technology, Inc. reserves the right to change products or specifications without notice. © 2011 Micron Technology, Inc. All rights reserved. 576Mb: x18, x36 RLDRAM 3 Package Dimensions Package Dimensions Figure 5: 168-Ball FBGA Seating plane A 168X Ø0.55 Dimensions apply to solder balls postreflow on Ø0.40 NSMD ball pads. 0.12 A Ball A1 ID 13 12 11 10 9 8 7 6 5 4 3 2 Ball A1 ID 1 A B C D 13.5 ±0.1 E F G 12 CTR H J K L M 1 TYP N 1 TYP 1.1 ±0.1 12 CTR 0.325 MIN 13.5 ±0.1 Note: PDF: 09005aef84003617 576mb_rldram3.pdf - Rev. D 03/13 EN 1. All dimensions are in millimeters. 16 Micron Technology, Inc. reserves the right to change products or specifications without notice. © 2011 Micron Technology, Inc. All rights reserved. PDF: 09005aef84003617 576mb_rldram3.pdf - Rev. D 03/13 EN Electrical Characteristics – IDD Specifications Table 4: IDD Operating Conditions and Maximum Limits Notes 1–6 apply to the entire table Description Condition Micron Technology, Inc. reserves the right to change products or specifications without notice. © 2011 Micron Technology, Inc. All rights reserved. -093E -093 -107E -107 -125F -125E -125 Units Notes = idle; All banks idle; No inputs toggling ISB1 (VDD) x18 125 125 125 125 125 125 125 mA 7 ISB1 (VDD) x36 125 125 125 125 125 125 125 ISB1 (VEXT) 30 30 30 30 30 30 30 Clock active standby current CS# = 1; No commands; Bank address incremented and half address/ data change once every four clock cycles ISB2 (VDD) x18 870 870 815 815 725 725 725 ISB2 (VDD) x36 895 895 835 835 740 740 740 ISB2 (VEXT) 30 30 30 30 30 30 30 Operational current: BL2 BL = 2; Sequential bank access; Bank transitions once every tRC; Half address transitions once every tRC; Read followed by write sequence; Continuous data during WRITE commands IDD1 (VDD) x18 1175 1115 1100 1045 990 940 915 IDD1 (VDD) x36 1185 1125 1110 1055 1000 950 925 IDD1 (VEXT) 35 35 35 35 35 35 35 BL = 4; Sequential bank access; Bank transitions once every tRC; Half address transitions once every tRC; Read followed by write sequence; Continuous data during WRITE commands IDD2 (VDD) x18 1205 1145 1130 1075 1020 970 945 IDD2 (VDD) x36 1215 1155 1140 1080 1030 980 950 IDD2 (VEXT) 35 35 35 35 35 35 35 BL = 8; Sequential bank access; Bank transitions once every tRC; Half address transitions once every tRC; Read followed by write sequence; Continuous data during WRITE commands IDD3 (VDD) x18 1300 1220 1200 1130 1085 1030 1000 IDD3 (VDD) x36 NA NA NA NA N/A NA NA IDD3 (VEXT) 35 35 35 35 35 35 35 Sixteen bank cyclic refresh using Bank Address Control AREF protocol; Command bus remains in refresh for all sixteen banks; DQs are High-Z and at VDDQ/2; Addresses are at VDDQ/2 IREF1 (VDD) x18 1550 1550 1400 1400 1230 1230 1230 IREF1 (VDD) x36 1570 1570 1420 1420 1245 1245 1245 IREF1 (VEXT) 80 80 75 75 70 70 70 Operational current: BL4 Operational current: BL8 Burst refresh current tCK mA mA mA mA mA 576Mb: x18, x36 RLDRAM 3 Electrical Characteristics – IDD Specifications 17 Symbol Standby current PDF: 09005aef84003617 576mb_rldram3.pdf - Rev. D 03/13 EN Table 4: IDD Operating Conditions and Maximum Limits (Continued) Notes 1–6 apply to the entire table Description Condition Micron Technology, Inc. reserves the right to change products or specifications without notice. © 2011 Micron Technology, Inc. All rights reserved. -093E -093 -107E -107 -125F -125E -125 Units Distributed Single bank refresh using Bank Adrefresh current dress Control AREF protocol; Sequential bank access every 0.489μs; DQs are High-Z and at VDDQ/2; Addresses are at VDDQ/2 IREF2 (VDD) x18 875 875 820 820 730 730 730 mA IREF2 (VDD) x36 900 900 840 840 745 745 745 IREF2 (VEXT) 30 30 30 30 30 30 30 Multibank re- Quad bank refresh using Multibank fresh current: AREF protocol; BL = 4; Cyclic bank 4 bank refresh access; Subject to tSAW and tMMD specifications; DQs are High-Z and at VDDQ/2; Bank addresses are at VDDQ/2 IMBREF4 (VDD) x18 2130 1925 2030 1810 1885 1885 1645 IMBREF4 (VDD) x36 2155 1950 2050 1830 1900 1900 1660 IMBREF4 (VEXT) 130 130 115 115 105 105 105 Operating BL = 2; Cyclic bank access; Half of burst write cur- address bits change every clock cyrent : BL2 cle; Continuous data; Measurement is taken during continuous WRITE IDD2W (VDD) x18 2110 2110 1910 1910 1665 1665 1665 IDD2W (VDD) x36 2290 2290 2070 2070 1805 1805 1805 IDD2W (VEXT) 80 80 75 75 70 70 70 Operating BL = 4; Cyclic bank access; Half of burst write cur- address bits change every two clock rent : BL4 cycles; Continuous data; Measurement is taken during continuous WRITE IDD4W (VDD) x18 1730 1730 1590 1590 1395 1395 1395 IDD4W (VDD) x36 1815 1815 1665 1665 1460 1460 1460 IDD4W (VEXT) 55 55 55 55 50 50 50 Operating BL = 8; Cyclic bank access; Half of burst write cur- address bits change every four clock rent :BL8 cycles; Continuous data; Measurement is taken during continuous WRITE IDD8W (VDD) x18 1475 1475 1335 1335 1190 1190 1190 IDD8W (VDD) x36 NA NA NA NA NA NA NA IDD8W (VEXT) 45 45 40 40 40 40 40 Multibank write current: Dual bank write BL = 4; Cyclic bank access using Dual Bank WRITE; Half of address bits change every two clock cycles; Continuous data; Measurement is taken during continuous WRITE IDBWR (VDD) x18 2305 2305 2170 2170 1885 1885 1885 IDBWR (VDD) x36 2400 2400 2250 2250 1960 1960 1960 IDBWR (VEXT) 80 80 75 75 70 70 70 Multibank write current: Quad bank write BL = 4; Cyclic bank access using Quad Bank WRITE; Half of address bits change every two clock cycles; Continuous data; Measurement is taken during continuous WRITE; Subject to tSAW specification IQBWR (VDD) x18 2965 2965 2890 2890 2525 2525 2525 IQBWR (VDD) x36 3195 3195 3000 3000 2615 2615 2615 IQBWR (VEXT) 130 130 115 115 100 100 100 Notes mA mA mA mA mA mA 576Mb: x18, x36 RLDRAM 3 Electrical Characteristics – IDD Specifications 18 Symbol PDF: 09005aef84003617 576mb_rldram3.pdf - Rev. D 03/13 EN Table 4: IDD Operating Conditions and Maximum Limits (Continued) Notes 1–6 apply to the entire table Description Condition Symbol -093E -093 -107E -107 -125F -125E -125 Units mA Operating burst read current example BL = 2; Cyclic bank access; Half of address bits change every clock cycle; Continuous data; Measurement is taken during continuous READ IDD2R (VDD) x18 2250 2250 2045 2045 1785 1785 1785 IDD2R (VDD) x36 2395 2395 2180 2180 1895 1895 1895 IDD2R (VEXT) 80 80 75 75 70 70 70 Operating burst read current example BL = 4; Cyclic bank access; Half of address bits change every two clock cycles; Continuous data; Measurement is taken during continuous READ IDD4R (VDD) x18 1740 1740 1595 1595 1400 1400 1400 IDD4R (VDD) x36 1835 1835 1685 1685 1475 1475 1475 IDD4R (VEXT) 55 55 55 55 50 50 50 Operating burst read current example BL = 8; Cyclic bank access; Half of address bits change every four clock cycles; Continuous data; Measurement is taken during continuous READ IDD8R (VDD) x18 1450 1450 1315 1315 1175 1175 1175 IDD8R (VDD) x36 NA NA NA NA NA NA NA IDD8R (VEXT) 45 45 40 40 40 40 40 Notes mA mA Micron Technology, Inc. reserves the right to change products or specifications without notice. © 2011 Micron Technology, Inc. All rights reserved. 576Mb: x18, x36 RLDRAM 3 Electrical Characteristics – IDD Specifications 19 576Mb: x18, x36 RLDRAM 3 Electrical Characteristics – IDD Specifications Notes: 1. IDD specifications are tested after the device is properly initialized. 0°C ≤ TC ≤ +95°C; +1.28V ≤ VDD ≤ +1.42V,+1.14V ≤ VDDQ ≤ +1.26V,+2.38V ≤ VEXT ≤ +2.63V,VREF = VDDQ/2. 2. IDD mesurements use tCK (MIN), tRC (MIN), and minimum data latency (RL and WL). 3. Input slew rate is 1V/ns for single ended signals and 2V/ns for differential signals. 4. Definitions for IDD conditions: • LOW is defined as VIN ≤ VIL(AC)MAX. • HIGH is defined as VIN ≥ VIH(AC)MIN. • Continuous data is defined as half the DQ signals changing between HIGH and LOW every half clock cycle (twice per clock). • Continuous address is defined as half the address signals changing between HIGH and LOW every clock cycle (once per clock). • Sequential bank access is defined as the bank address incrementing by one every tRC. • Cyclic bank access is defined as the bank address incrementing by one for each command access. For BL = 2 this is every clock, for BL = 4 this is every other clock, and for BL = 8 this is every fourth clock. 5. CS# is HIGH unless a READ, WRITE, AREF, or MRS command is registered. CS# never transitions more than once per clock cycle. 6. IDD parameters are specified with ODT disabled. 7. Upon exiting standby current conditions, at least one NOP command must be issued with stable clock prior to issuing any other valid command. PDF: 09005aef84003617 576mb_rldram3.pdf - Rev. D 03/13 EN 20 Micron Technology, Inc. reserves the right to change products or specifications without notice. © 2011 Micron Technology, Inc. All rights reserved. 576Mb: x18, x36 RLDRAM 3 Electrical Specifications – Absolute Ratings and I/O Capacitance Electrical Specifications – Absolute Ratings and I/O Capacitance Absolute Maximum Ratings Stresses greater than those listed may cause permanent damage to the device. This is a stress rating only, and functional operation of the device at these or any other conditions outside those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may adversely affect reliability. Table 5: Absolute Maximum Ratings Symbol Parameter Min Max Units VDD VDD supply voltage relative to VSS –0.4 1.975 V VDDQ Voltage on VDDQ supply relative to VSS –0.4 1.66 V Voltage on any ball relative to VSS –0.4 1.66 V Voltage on VEXT supply relative to VSS –0.4 2.8 V VIN,VOUT VEXT Input/Output Capacitance Table 6: Input/Output Capacitance Notes 1 and 2 apply to entire table RL3-2133 Capacitance Parameters Symbol Min CK/CK# CCK ΔC: CK to CK# CDCK Single-ended I/O: DQ, DM Input strobe: DK/DK# Output strobe: QK/QK#, QVLD RL3-1866 Max Min 1.3 2.1 0 0.15 CIO 1.9 CIO 1.9 RL3-1600 Max Min Max Units 1.3 2.1 0 0.15 1.3 2.2 pF 0 0.15 pF 2.9 1.9 3.0 2.0 3.1 pF 2.9 1.9 3.0 2.0 3.1 pF Notes 3 CIO 1.9 2.9 1.9 3.0 2.0 3.1 pF ΔC: DK to DK# CDDK 0 0.15 0 0.15 0 0.15 pF ΔC: QK to QK# CDQK 0 0.15 0 0.15 0 0.15 pF ΔC: DQ to QK or DQ to DK CDIO –0.5 0.3 –0.5 0.3 –0.5 0.3 pF 4 Inputs (CMD, ADDR) ΔC: CMD_ADDR to CK JTAG balls RESET#, MF balls Notes: PDF: 09005aef84003617 576mb_rldram3.pdf - Rev. D 03/13 EN CI 1.25 2.25 1.25 2.25 1.25 2.25 pF 5 CDI_CMD_ADDR –0.5 0.3 –0.5 0.3 –0.4 0.4 pF 6 CJTAG 1.5 4.5 1.5 4.5 1.5 4.5 pF 7 CI – 3.0 – 3.0 – 3.0 pF 1. +1.28V ≤ VDD ≤ +1.42V, +1.14V ≤ VDDQ ≤ 1.26V, +2.38V ≤ VEXT ≤ +2.63V, VREF = VSS, f = 100 MHz, TC = 25°C, VOUT(DC) = 0.5 × VDDQ, VOUT (peak-to-peak) = 0.1V. 2. Capacitance is not tested on ZQ ball. 3. DM input is grouped with the I/O balls, because they are matched in loading. 4. CDIO = CIO(DQ) - 0.5 × (CIO [QK] + CIO [QK#]). 5. Includes CS#, REF#, WE#, A[19:0], and BA[3:0]. 6. CDI_CMD_ADDR = CI (CMD_ADDR) - 0.5 × (CCK [CK] + CCK [CK#]). 7. JTAG balls are tested at 50 MHz. 21 Micron Technology, Inc. reserves the right to change products or specifications without notice. © 2011 Micron Technology, Inc. All rights reserved. 576Mb: x18, x36 RLDRAM 3 AC and DC Operating Conditions AC and DC Operating Conditions Table 7: DC Electrical Characteristics and Operating Conditions Note 1 applies to the entire table; Unless otherwise noted: 0°C ≤ TC ≤ +95°C; +1.28V ≤ VDD ≤ +1.42V Description Symbol Min Max Units Supply voltage VEXT 2.38 2.63 V Supply voltage VDD 1.28 1.42 V Isolated output buffer supply VDDQ 1.14 1.26 V Reference voltage VREF 0.49 × VDDQ 0.51 × VDDQ V Input HIGH (logic 1) voltage VIH(DC) VREF + 0.10 VDDQ V Input LOW (logic 0) voltage VIL(DC) VSS VREF - 0.10 V Input leakage current: Any input 0V ≤ VIN ≤ VDD, VREF ball 0V ≤ VIN ≤ 1.1V (All other balls not under test = 0V) ILI –2 2 µA Reference voltage current (All other balls not under test = 0V) IREF –5 5 µA Notes: Notes 2, 3 1. All voltages referenced to VSS (GND). 2. The nominal value of VREF is expected to be 0.5 × VDDQ of the transmitting device. VREF is expected to track variations in VDDQ. 3. Peak-to-peak noise (non-common mode) on VREF may not exceed ±2% of the DC value. DC values are determined to be less than 20 MHz. Peak-to-peak AC noise on VREF should not exceed ±2% of VREF(DC). Thus, from VDDQ/2, VREF is allowed ±2% VDDQ/2 for DC error and an additional ±2% VDDQ/2 for AC noise. The measurement is to be taken at the nearest VREF bypass capacitor. Table 8: Input AC Logic Levels Notes 1-3 apply to entire table; Unless otherwise noted: 0°C ≤ TC ≤ +95°C; +1.28V ≤ VDD ≤ +1.42V Description Symbol Min Max Units Input HIGH (logic 1) voltage VIH(AC) VREF + 0.15 – V Input LOW (logic 0) voltage VIL(AC) – VREF - 0.15 V Notes: PDF: 09005aef84003617 576mb_rldram3.pdf - Rev. D 03/13 EN 1. All voltages referenced to VSS (GND). 2. The receiver will effectively switch as a result of the signal crossing the AC input level, and will remain in that state as long as the signal does not ring back above/below the DC input LOW/HIGH level. 3. Single-ended input slew rate = 1 V/ns; maximum input voltage swing under test is 900mV (peak-to-peak). 22 Micron Technology, Inc. reserves the right to change products or specifications without notice. © 2011 Micron Technology, Inc. All rights reserved. 576Mb: x18, x36 RLDRAM 3 AC and DC Operating Conditions Figure 6: Single-Ended Input Signal VIL and VIH levels with ringback 1.60V VDDQ + 0.4V narrow pulse width 1.20V VDDQ Minimum VIL and VIH levels 0.750V 0.70V VIH(AC) VIH(DC) 0.624V 0.612V 0.60V 0.588V 0.576V 0.50V 0.45V 0.750V VIH(AC) 0.70V VIH(DC) 0.624V 0.612V 0.60V 0.588V 0.576V VIL(DC) VIL(AC) VREF + AC noise VREF + DC error VREF - DC error VREF - AC noise 0.50V VIL(DC) 0.450V VIL(AC) VSS 0.0V VSS - 0.4V narrow pulse width –0.40V PDF: 09005aef84003617 576mb_rldram3.pdf - Rev. D 03/13 EN 23 Micron Technology, Inc. reserves the right to change products or specifications without notice. © 2011 Micron Technology, Inc. All rights reserved. 576Mb: x18, x36 RLDRAM 3 AC and DC Operating Conditions AC Overshoot/Undershoot Specifications Table 9: Control and Address Balls Parameter RL3-2133 RL3-1866 RL3-1600 Maximum peak amplitude allowed for overshoot area 0.4V 0.4V 0.4V Maximum peak amplitude allowed for undershoot area 0.4V 0.4V 0.4V Maximum overshoot area above VDDQ 0.25 Vns 0.28 Vns 0.33 Vns Maximum undershoot area below VSS/VSSQ 0.25 Vns 0.28 Vns 0.33 Vns RL3-2133 RL3-1866 RL3-1600 Maximum peak amplitude allowed for overshoot area 0.4V 0.4V 0.4V Maximum peak amplitude allowed for undershoot area 0.4V 0.4V 0.4V Maximum overshoot area above VDDQ 0.10 Vns 0.11 Vns 0.13 Vns Maximum undershoot area below VSS/VSSQ 0.10 Vns 0.11 Vns 0.13 Vns Table 10: Clock, Data, Strobe, and Mask Balls Parameter Figure 7: Overshoot Volts (V) Maximum amplitude Overshoot area VDDQ Time (ns) Figure 8: Undershoot VSS/VSSQ Volts (V) Undershoot area Maximum amplitude Time (ns) PDF: 09005aef84003617 576mb_rldram3.pdf - Rev. D 03/13 EN 24 Micron Technology, Inc. reserves the right to change products or specifications without notice. © 2011 Micron Technology, Inc. All rights reserved. 576Mb: x18, x36 RLDRAM 3 AC and DC Operating Conditions Table 11: Differential Input Operating Conditions (CK, CK# and DKx, DKx#) Notes 1 and 2 apply to entire table Parameter/Condition Symbol Min Differential input voltage logic HIGH – slew VIH,diff_slew +200 n/a mV 3 Differential input voltage logic LOW – slew VIL,diff_slew n/a -200 mV 3 Differential input voltage logic HIGH VIH,diff(AC) 2 × (VIH(AC) - VREF) VDDQ mV 4 Differential input voltage logic LOW VIL,diff(AC) VSSQ 2 × (VIL(AC) - VREF ) mV 5 Differential input crossing voltage relative to VDD/2 Max Units Notes VIX VREF(DC) - 150 VREF(DC) + 150 mV 6 Single-ended HIGH level VSEH VIH(AC) VDDQ mV 4 Single-ended LOW level VSEL VSSQ VIL(AC) mV 5 Notes: 1. 2. 3. 4. CK/CK# and DKx/DKx# are referenced to VDDQ and VSSQ. Differential input slew rate = 2 V/ns. Defines slew rate reference points, relative to input crossing voltages. Maximum limit is relative to single-ended signals; overshoot specifications are applicable. 5. Minimum limit is relative to single-ended signals; undershoot specifications are applicable. 6. The typical value of VIX is expected to be about 0.5 × VDDQ of the transmitting device and VIX is expected to track variations in VDDQ. VIX indicates the voltage at which differential input signals must cross. Figure 9: VIX for Differential Signals VDDQ VDDQ CK#, DKx# CK#, DKx# X VIX VIX VDDQ/2 X X VDDQ/2 VIX X CK, DKx CK, DKx VSSQ PDF: 09005aef84003617 576mb_rldram3.pdf - Rev. D 03/13 EN VIX VSSQ 25 Micron Technology, Inc. reserves the right to change products or specifications without notice. © 2011 Micron Technology, Inc. All rights reserved. 576Mb: x18, x36 RLDRAM 3 AC and DC Operating Conditions Figure 10: Single-Ended Requirements for Differential Signals VDDQ VSEH,min VDDQ/2 VSEH CK or DKx VSEL,max VSEL VSS Figure 11: Definition of Differential AC Swing and tDVAC tDVAC VIH,diff(AC)min VIH,diff_slew,min CK - CK# DKx - DKx# 0.0 VIL,diff_slew,max VIL,diff(AC)max half cycle PDF: 09005aef84003617 576mb_rldram3.pdf - Rev. D 03/13 EN 26 tDVAC Micron Technology, Inc. reserves the right to change products or specifications without notice. © 2011 Micron Technology, Inc. All rights reserved. 576Mb: x18, x36 RLDRAM 3 AC and DC Operating Conditions Table 12: Allowed Time Before Ringback (tDVAC) for CK, CK#, DKx, and DKx# Slew Rate (V/ns) MIN tDVAC (ps) at |VIH/VIL,diff(AC)| >4.0 175 4.0 170 3.0 167 2.0 163 1.9 162 1.6 161 1.4 159 1.2 155 1.0 150 2.0 175 2.0 170 1.5 167 1.0 163 0.9 162 0.8 161 0.7 159 0.6 155 0.5 150 2.0 175 2.0 170 1.5 167 1.0 163 0.9 162 0.8 161 0.7 159 0.6 155 0.5 150
MT44K32M18RB-093 IT:A TR 价格&库存

很抱歉,暂时无法提供与“MT44K32M18RB-093 IT:A TR”相匹配的价格&库存,您可以联系我们找货

免费人工找货